首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   14篇
  国内免费   5篇
测绘学   9篇
大气科学   4篇
地球物理   71篇
地质学   110篇
海洋学   7篇
天文学   30篇
综合类   7篇
自然地理   13篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   11篇
  2019年   12篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有251条查询结果,搜索用时 31 毫秒
241.
The world’s rising urban density expansion has resulted in a proliferation of attempts to efficiently use space and a higher level of spatial complexity in metropolitan areas. 3D geospatial data models are increasingly being embraced to facilitate communicating the spatial dimensions of complex built environments in different applications. For example, the use of 3D models in land administration systems has been recognized as a good approach for communicating the spatial complexity of legal spaces within multi‐storey buildings. The spatial extent of legal space—to which rights, restrictions and responsibilities relate in a 3D digital cadastre—needs to be accurately defined and geometrically closed; watertight. Therefore, this study aims to address the challenges regarding checking the closure of diverse 3D legal spaces and engage several techniques to formulate the watertight concept for cadastre. The research’s methodology is built on a 3D polyhedral surface using a half‐edge data structure. A primitive check is employed to assess the spatial consistency of lower‐dimensional primitives of 3D objects. Subsequently, advanced closure checks ensure the closure of volumetric legal spaces represented by 2‐manifold and non‐2‐manifold data models. The article concludes that, by adopting the proposed approaches, the internal spatial consistency of legal spaces in urban land administration will be certified.  相似文献   
242.
From northern Tunisia, small-scale well-preserved microbialites, contemporaneous to the global oceanic anoxic event 2 (OAE 2) are first reported on the southern Tethyan Margin. These microbialites are encased within the pelagic organic-rich black shales of the Bahloul Formation (Cenomanian–Turonian transition). Biostratigraphic, petrographic, and geochemical investigations carried out to constrain their biogenicity and genesis character led to consider them as thrombolites and stromatolites occurring in lenticular bioherms/biostromes and columnar bodies co-relatable to the global ‘filament event’ of the authors, close to the base of the Watinoceras ammonite zone. Abundant clotted micrite, cyanobacterial filaments, and algal tissues point to the key process of microbial carbonate precipitation and to a major role played by microbes in the stabilisation and subsequent lithification, which in turn favoured the preservation of the original structure of the microbialites. These microbially induced carbonate formations are considered as favoured by chemosynthetic fauna of bivalve molluscs and lithistid sponges which were able to host symbiotic microbial communities. The latter contributed to the precipitation of authigenic calcite and non-carbonate minerals (e.g. pyrite) fuelled by microbial activity under sulphate-reducing conditions. The carbonate body onset is considered to be initiated by seafloor instability due to syndepositional fault acting that induced the appraisal of uplifted tilted blocks within oxygenated waters but near the anoxic water masses. Generated depressions allowed the development of chemosynthetic-based communities. Deep faults related to Triassic salt domes acted as conducts for hydrocarbon and salt brine expulsion to the seafloor and the microbialite growth was enhanced by an abrupt uprising sea level under warmer conditions.  相似文献   
243.
Sedimentary biogenic silica from Redeyef in Gafsa basin (southern Tunisia) was analysed for its 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra and complemented by X-ray diffraction and SEM observations. The 29Si MAS NMR spectrum is characterized by the abundance of hydroxylated silicon, displayed in resonance intensities and reflects a clear tendency towards dissolution of diatomaceous amorphous silica and the occurrence of the hydrated silica, which is the main component that ensures the diagenetic transition via the mechanism of dissolution–precipitation to other more crystalline silica phases, after the lost of its hydroxyls groups (water) by heating (burial). 27Al MAS NMR reveals two coordinations of Al; the octahedrally coordinated Al suggests the presence of clay relics trapped during crystal growth or a microcrystalline zeolite (clinoptilolite detected by SEM observations), while the tetrahedrally coordinated Al suggests the presence of minor quantities of minerals with tetrahedral Al, such as an Al-rich fluid and/or minerals such as feldspars.  相似文献   
244.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   
245.
The Quaternary stratigraphic record of Jebel El Mida, composed of continental deposits, is a useful example of concomitant travertines and alluvial deposition in an extensional setting. Travertine deposition occurred in a faulted Pleistocene alluvial fan giving rise to seven (recognised) facies interfingering with five other alluvial ones. The travertine depositional events indicate a tectonically driven evolution from terraced slope (facies group FC1–FC6) to a travertine fissure ridge-type depositing phase (facies group of FC1–FC7). Interfingering between travertine and alluvial facies indicates the co-existence of adjacent and time-equivalent depositional environments. The travertine deposition resulted from deep origin hydrothermal fluids channelled along damaged rocks volumes associated to a regional fault system, named as the Gafsa Fault (GF). The travertine–terrigenous succession in Jebel El Mida highlights the major role played by the GF in controlling: (i) the hydrothermal fluid flow, still active as also indicated by the numerous thermal springs aligned along the fault zone; (ii) paleoflow directions, discharge locations, volume, rate and fluctuations of the water supply. The paleoclimatic correlation with adjacent localities reveals that, at that time, humid episodes could have contributed to the recharge of the hydrothermal system and to the deposition of alluvial sediments.  相似文献   
246.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   
247.
This paper provides a review of various investigations concerned with vibration isolation using trench barriers and factors affecting their performance, also extracts design recommendations, because there is no exact conclusion of researches in this field. Vibrations induced by different sources can be seriously harmful to structures and occupants. Geometrical parameters, soil characteristics, and filling material properties can affect a barrier’s performance. Investigators have applied analytical approach, finite element, boundary element, experimental, and field studies to identify relevant factors. Various geometrical parameters affecting trench’s isolation level were examined, among which depth of trench was found to be the most important, but in most cases, the width of the trench and source-barrier distance have a low effect. Shear-wave velocity ratio of filling material and surrounding soil has the most significant role of all material properties. Using high-energy-absorbing materials can lead to better isolation. The majority of studies consider soil and filling material’s behavior to be elastic, so changes in loading amplitude have no effect on vibration reduction. Finally, among special cases in vibration isolation by trenches, non-rectangular and multiple ones found to be economically satisfying and well-isolating barriers.  相似文献   
248.
There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
249.
When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non‐negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single‐period (e.g., first‐mode), spectral acceleration would require careful record selection at each site and result to significant site‐to‐site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
250.
In this study, strong ground motion record(SGMR) selection based on Eta(η) as a spectral shape indicator has been investigated as applied to steel braced frame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon(ε) and the target Eta(η) values at different hazard levels is presented, taking into account appropriately selected SGMR's. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter η is a more robust predictor of damage than searching for records with appropriate ε values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号